skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "WOLDEGERIMA, WOLDEGEBRIEL A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A within-human-host malaria parasite model, integrating key variables that influence parasite evolution-progression-advancement, under innate and adaptive immune responses, is analyzed. The implicit role of immunity on the steady state parasite loads and parasitemia reproduction number ([Formula: see text]), a threshold parameter measuring the parasite’s annexing ability of healthy red blood cells (HRBCs), eventually rendering a human infectious to mosquitoes, is investigated. The impact of the type of recruitment function used to model HRBC growth is also investigated. The model steady states and [Formula: see text], both obtained as functions of immune system variables, are analyzed at snapshots of immune sizes. Model results indicate that the more the immune cells, innate and adaptive, the more efficient they are at inhibiting parasite development and progression; consequently, the less severe the malaria disease in a patient. Our analysis also illustrates the existence of a Hopf bifurcation leading to a limit cycle, observable only for the nonlinear recruitment functions, at reasonably large [Formula: see text]. 
    more » « less